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The objective of t h c r ~~scej r ch prOgr a 1n unde r  Gran t  No . DAHC

0 4— 7 5 - G- O l ~~~, c x t e ni in g  f rom  1 Jun e  1975 to 31 May 1978 , has be1.~n to gain an

unders tanding of the e l ec t romagne t i c  p ropaga t ion  and d i f f r a c t i o n  p r o p e r t i e s  of

concave sur faces  having radii  of cu rva tu re  la rge  compared to the wavelength ,

with application to ground wave propag ation , large re f lec tor  antenn as , and

mutually coup led conformal  antenna ar rays .

This basic objectiv e has been accomp lished . \Vhen the program was

initiated , t h e r e  was onl y incom plete  and non-conclusive information availabl e

on how the radiation , dif f rac t ion  and guiding of fields is affec ted  by a nearby

large-radius  concave s u rf a c e .  It was recognized that nei ther  a geometrical

optics nor a whisp er ing gallery mode r epreoentat ion is sa t is factory  f or desc r ip-

tion of the field , and that a mixture  of ray s and modes , or a more complicated

formulation involving a canonical integral  analogous to the Fock integral  for

convex surfaces , may be the most ef fec t ive. However , the founda tions f or these

conjectures were  lacking; accurate cri teria for  the appropriate c ombination of

rays and modes were  not at hand , nor were  comprehensiv e numerical comparisons

to assess the uti lity and qua l ity of var ious f ie ld  re presen tat ions . Missing also

were t ractable  results for  the case when the observation point approaches the

sourc e or when the radius of curvature  of a circular contour tends to infinity

(infinite plane limit).

Our work has succeeded in establishing a sound analytical basis for

any of the above-mentioned field formulations , Most important , we have shown

that a mixture of ray-optical and whisperin g gallery mode fields alone , chosen

in correct proport ion , is indeed capable of providing accurate  field values on

the concave surface (so far  taken to be a circular cy linder).  Exhaustive numeri-

cal calculations have provided reliable compari sons of d i f f e r e n t  field representa-

tions and have permitted a critical evaluation of their accuracy and sensitivii~y

to error or to parameter  changes . The rc ’sults produced under  this  
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cont rac t  a re  the most comp lete yet available , and they have yielded basic

insi ghts into the  ph ysical  mechan i sms  that establish the concave sur face  field.

Two m a n u s c r ipts , accepted for publication in IEEE Transact ions  on Antenna s

and Propagation , and a t t ached  in the Appendix , summarize  these accomplishments

which are t h er efo r e  not detailed here :

1. “Hi gh Frequenc y Fields Exc ited by a Line Source Located on a Perfect ly

Conduct ing Concave Cylindrical  Surface ” , by T. Ishihara , L. B. Felsen and

A. Green , and

2 . “Hi gh Frequency Fields Excited by a Line Source Located on a Concave

Cylindrical Impedance Surface” , b y T. Ishihara and L. B. Felsen.

A third manuscr ipt , almost completed , extends these studies to the three-

dimensional case of point source excitation.

The following paper s were g iven at technical meet ings:

“Excitation of Large Concave Surfaces” , by L. B. Felsen and A. Green ,

IEEE/AP-S International Syniposiun-i , Universi ty of Massachuse t t s , Amhers t ,

Mass . ,  October 10-15 , 1976.

“Ground Wave Propagation in the Presence of Smooth Hills and Depress ions ” ,

by L. B. Felsen and A. Green , AGARD Symposium on EM Propagation Charac ter i s t ics

of Surface Materials and Interface Aspects , held in Istanbul , Turkey ,  October 18-19, 1976

and published in the Symposium Proceedings.

“Effec ts  of Smooth Elevations and Depressions on Ground Wave Propagation ” ,

by L. B. Felsen and T. Ishihara , URSI Symposium on Propagation in Non-Ionized

Media , held in La Baule , Franc e, April 28-May 6 , 1977.

“Hi gh-Frequenc y Currents  Excited by a Line Source Located on a Concave

Cylindrical Surface ” , by L.B . Felsen and T. Ishihara , URSI International EM Wave

Theory Symposium , Stanford Univers i ty ,  Palo Alt o, California , June 20-24 , 1977.
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‘ Il i gh- Frequen c y Fields Exci ted  by a Line Source Located on a Concave

Cyl indr ical  Impedance Sur face ” , by T. I sh ihara  and L. B. Felsen , 1978

In te rna t iona l  U R S T / A P — S  Sympos ium , Wash ing ton , D. C. , May 15— 19 , 1978.

• “Hi gh— Frequency Behavior  of Concave  Sur faces ” by L. B. Felsen ,

Invited paper , 18 U RSI General  Assembly, H e l s ink i , Finland , Augus t  1978.

F.
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APPENDIX

1. High Frequency Fields Excited by a Line Source Located on a
Perfectly Conduc ting Concave Cylindrical Surface, T. Ishihara ,
L.B . Fels en and A. Green .

2. High Frequency Fields Excited by a Line Source Located on a
Concav e Cylindrical Impedanc e Surface , T. Ishibara and L. B. Felsen.
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• 1. Hig h Frequency  Field s Exci ted  b y a Line Source Located on a

Perfectly Conducting Concave Cy l indr ica l Surface

by

T. Ishihara , L. B. Felsen and A. Green
Depar tmen t  of E l ec t r i ca l  Eng ineerin g

Pol ytechni c  Ins t i tu te  of N e w  York
• Fa rming da le, New York  11735

Abst rac t

Alternative representat ions  are obtained for  the hig h f r equency  su r f ace

field excited on a pe rfectl y conductin g concave circular  cy l inder  by an

axial magnetic line current  located on the surface.  Included are ray

optical , canonica l in teg ral , whisperin g g alle r y mode and near  field formu-

lations , and variou s combinations of these. Asymptotic  evaluations in

• ‘. different parameter  ranges  lead to resul ts  with vary ing accuracy and

physical content. Their utilivy is assessed by extensive numerical cal-

culation s and comparisons.  Most intri guing is a form of the asymptotic

solution that involves onl y a number  of geometr ic  optical rays  and a

number of whispering gal lery  modes.

* This work was sponsored by the U. S. A r m y  Resea rch  Off ice .  Durham.
North Carolina . unde r  Con t rac t  No. DAZ1 C 04 -75 -G-0 152 .
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I. Introduction

When hi gh f r equency  field s impinge  on a concave p e r f e c t l y conduc t ing

su rface , the induced sur face  c u r r e n t s  can be well approximated by the i r

physical optics values since the ent i re  surface  is illuminated. Phrased

• alternatively ,  the meth od of geometr ical  optics is adequate to descr ibe

the surface field behavior .  However , when actual sources  or induced

equivalent sources  (for example , at an ed ge te rmina t ion)  are  located ve ry

near or on the su rface , geometr ical  optics becomes inapplicable because

the multiply ref le cted ray fields (Fig. I)  have caustics that  lie near  the

boundary (Fi g. 2). Therefore , it is n e c e s s a r y  to account in some othe r . 
.

manner f o r  the field s that would be contributed by rays havin g under g one

many reflections.

A systematic stud y of the problem can be undertaken on the prototype

configuration of a circular cy linder. Since a thoroug h understanding of the

axiall y independent two-dimensional case is essential for extension to

three-dimensional field s, attention is focused here on the problem of

excitation by a magnetic line current  located on the concave surface and

oriented parallel to the cy linder axis. Starting from a ri g orous fo r mulation

of the Green ’s function problem , ene may extract from the aximuthall y

periodic solution for the closed surface a po rtion 1 that describes only the

propagation characterist ics between points Q and P in Fig . 1. Results

obtained therefrom are applicable to concave surface segments that are

open , and they are in a form suitable for subsequent general izat ion ~o

variable surface prope r ties. Thi s basic repr esentat ion . given as a con-

• tour integral , is the s tar t ing poin t for the present  stud y ,  which has as its

goal the explorat ion of a l ternat ive  field representat ions that a re  usefu l for

calculation in various paramete r ranges .  Included arc  ray-opt ica l , ca n onical
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In tegra l  and whisper in g g a l l e r y  mode (Fi g. 3)  so lu t ions , and var iou s

combinat ions  of the se. St rong emp h a s i s  is placed on the phys ica l  inter-

preta t ion of the r e s u l t s , and on t he i r  r e l a t ive  a c c u r a c y .  Most  pleasing

f rom a phys ica l  s tand po in t  is a f ie ld  so lu t ion  t h a t  compr i ses  a mixture  of

(N+ 1)  geometr ic  opt ica l  r a y s  and M v .h i spe  r ing g a l l e r y  modes ,  with c r i t e r i a

provided for  the prope r choice of N and M.

In the course  of the p r e s e n t a t ion . r e f e r e n c e  is made to the sparse

relevant  l i t e r a t ur e  on this problem t 3, For ce r t a in  of the a l t e rna t ive

• r ep resen ta t ion s .  we have pe r fo rmed  extens ions  and re f inements  of previous

resul ts  but othe r s  obtained here ,  in p a r t i cu l a r .  the above-ment ioned ray and

whisper ing ga ll e ry  mod e combination , a re  new. The conclusions derived

from this stud y.  supported by extensive numer ica l  calculat ions , provide a

thoroug h u n der s t an d i ng . both physical l y and quant i ta t ivel y ,  of the propa-

gation charac ter i s t i c s  of pe r fec t ly conduct ing concave cy l indrical  sur f aces .

Some extensions to n o n - ci r c u l a r  an d (o r )  surface impedance boundaries

have been considered elsewhere
t ’ ~~~~~~~ as has the case of point source

excitation5.

_____
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II. Al t e rna t ive  Field P r e s e n t a t i o n s

A. Green ’s Function Formulation

We consider the p ro to type  problem of line source radiat ion insid e a

perfect l y conductin g c i r c u l a r  cy l inder  of r ad ius  a. To make the anal y sis

relevant to the p ropaga t ion  along concave sur faces  in genera l , it is neces-

• sary to remove the azimuthal  per iod ic i ty  imposed on the field s in the cy lin-

dr ical p = ( p .  4~) geometry ,  where  p represents  the r adial  and 4) the

angular (azimuthal)  coordinate.  This can be done by ex t endin g the ran g e

of th e $ coordinate f rom its p h ysical  per iodic  domain 0 < ~ < 2 ii into an

infinite domain -oc <~ < ~ 6, Such an extension imp lies that  angular l y

propagating waves ori g inatin g at the source  point (p ’ , 4) ’) are  outgoin g

toward 1 4 ) 1  = ~~; this “an gula r radiation condit ion ” can be reali zed b y p lacing

at some angular location away f rom t he source ang le 4,’ a perfect  abso rbe r

for angularly propagating waves. Such an absorber has , however, the

undesired proper ty  of generat ing d i f f rac t ion at the radial coordinate origin

p = 0. Therefore , when considering propagat ion phenomena ascr ibab le

only to the cy linder su r f ace , it is desirable  to remove the spu rious dif-

fraction effects from the total field solution .

The lin e source Green ’s fun c tion in the cy lind rical domain 0 < p < a ,

-cc <4  < cc , can be constructed by the method of separation of variables

and expressed in its most general form as a contour integral  involvin g the

two one-dimensional chara~c ter is t ic G reen ’s functions g~ and g 4, for the

radial and angular domains , respectivel y 6. When the Green ’s function is

represented In te rm s of angularl y propagat ing waves , the cor ’~’sponding

eigenmode spectrum in the radi~ l domain involves a d i sc re te (w hi spe ring

galler y mode) and cont inu ous por tion 3. The la t ter  accounts in part  for

propagation phenomena associated with the portion of the concaii c boundary
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ly ing between the source and observa t ion  points (this is the des i red  cont r ibu-

tion) . and in p ar t  fo r  the spuriou ’ d i f f ~~~ct ion  e f fect s  of the angula r a bs o r b e r .

• When the spurious e f f e c t s  ar e  removed and cognizance ir taken of the hig h-

frequency n a t u r e  of the anal y sis . one ma y show that the re levant  p ropaga t ion

charac te r i s t ic s  along the port ion of the concave bound ary  l y ing between

the source point Q and the obse rva t ion  point P in Fig. I are  contained

in the partial Green ’s function ’

i vf 4 ,~ 4) ’~
G ( p , p ’ = 2 ~ 

e 
(2) dv ( I )

— j (tr ka) C H’ (ka)J~(ka)

where k is the free-space wavenurnber, the prime on the cylinder

functions denote s the derivative with respect  to the argument , and a time

factor exp(- iw t) is implied. It has been assumed in ( I )  that P and Q

• both lie on the boundary (i. e . ,  p = p ’ = a) and that the boundar y condition

• requires that the normal derivative of the Green ’ s func tion vanis hes at

p = a; this makes G proportional to the axial component of magnetic field.

The contour C and the singularities of the integrand in the complex

v -plane are shown in Figure 4. Contributions f rom the pole singularities

~‘m arising f r o m

J’ (ka) = 0 , rn = 1,2,... (2)

are foun d to describe whispering gallery  modes. While (2) has an infinite

number of real solutions as indicated in Fig. 4 , only those with Re 0

represent spectral  contributions in the angular t ransmission representat ion

which includes also a continuous spectrum.
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B. Whispering Gallery Mode and Cont inuous  Spec t r um R epresenta t ion

The spectral repr e senta tic n compr i s ing  a d iscre te  (whispering gal lery

mode) po r t ion and a cont inuous port io n may be ob tained directl y f rom ( 1) by

dcfo rrning C in Fig. 4 int o a cont our extendin g along th e imaginar y .
~
, axis:

• M1
G = ~~

’ G + R (3)
s-J m Mm 1  1

where is the total number of poles satisf y ing Re vm > 0 and

= 2 1 1 7e aI 4) 4 ) ’ 15 inh~dv ka>> i (4a)
1 j(,~ka) - joo H’~ ~(ka) J ’(ka )  Ir ()•‘ .

V V

is the continuous spectrum. Following Wasylkiwskyj~ the first integral may

be simplified to the second form shown and also to

• 
4[~~~(k s) - Y 0( .cs) 1 s =a I4-4’ I (4b)

where H is the Struve function and Y the Neumann function. Each
0

r esidue contr ibut ion Gm represents a whispering gallery mode of the form

~ 
tvm I4 ’~ 4 ) ’ I  a

= -
~~~~~

_ e 

~
‘m~~~ [5~~ 

J’v(ka)] (5) 
~

On use of the uniform asymptotic formulas given by

S (ka) ~~~~~~~~~~~~~~~~ c~~ AI[ -a] , v = ka sin w 
•

• S
~
t(ka)

~
. ~~

,
f�C O S W  

~~~~AI’[-~]

(6)
3/2 3a =~~~ka [ c os w - ( ~~- - w ) sin~~v ) ,  Re w > 0
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which a re  j u s t i f i e d  h e r e , one f in d s

exp ((ks sin w + iir/2)
Vt.’G . .  

k~.(n/~ -w )cos w • (7)

The roots w are dcte rm incd  by solut~Ion of the resonance equation

CO S~~V - ( n I Z - w )  s iu w  = 3 ~m ( 7a)

where Ai’(-a ) = 0 , in = 1 , 2 . . . .  M 1.

C. Ray-optical Representation

To genera te  a r a y — o p t i c a l  f o r m u l a t ion , one rC l) l f l Cc S H’~
2
~(ka )  .i nd

J~ (ka) = {I~~~
t 

~(ka) + Fl~~9ka)} / .~ 
by t he i r  fl~ bye a s y m ptot ic  f o r m s

• 
H h 1 2)

(ka) .~[2(~~
5W 

exP (+ ika [cosw - (
~ - _w)sinw ]±L~~~) 

(8)

Re w> 0, (ka (cos w - (
~~ -w) sin w 2/3 >> ~ 

. (8a)

where v ~ ka sin w. Utili.~ing the traveling wave expansion

i~i,(l)
= 

~~~~~~~~ 
(_1)Tt rtt , r = 

~~~
2 (k:)

In conjunct ion with (8), one red uces (1) to a ser ies  of in tegra l s

( 10)

where

G~~~- + ( .
~

L ) n
c1 

exp [ (ka q (w)) dw (tOa)
I) 

•
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and

q~ (w) = ~~~ -4) ‘~~ 
sin w + 2(n+l) [ cos w - (

~~ 
- w) sin w] . (l Ob)

The saddle points of q (w) ,  as ob t a ined f rom d q /dw 0 , are
it

i~ ~4 ) -~~~’l — iTw =~~~~~~ — , w = — , ( 11)
an 2 2(n1 1) s 2

• and thus lie on the real  w axis between w = 0 and w = ir/2 . A typical path C
.’

through the nth sath4le point is shown in Fi gure  5. The or ig ina l  path mapped

•from the v plane can be deformed into C~~. The Deb ye approximations in (8)

are valid in this relevant reg ion  of the complex w-plane. Use of the conven•

tional saddle point formula  for evaluation of the integral  in (IOa) yields

• _ _ _  
ikD

G _._ e (’
~~4J__ .?_ (j)fl e ( 12)

fl I rk

where

= 2(n+ l) a sin ( I 4 ) - 4 ’ f I Z ( n + l) ] . ( 12a)

This result corresponds to a direct or multiply reflected ray as depicted

• In Figure 1 . and could have been constructed direct l y by ray-opt ical

techn iques.

Although the series in (10) , with (12), formall y contains ray contribu-

tions with an arb i t rar i ly large number of reflect ions , these are suspect

• elnce the saddle point s , from which they are derived, all cluster about

w = n/2. Thus, the asymptotic method, whereby each saddle point is treated

aa Isolated, is inadequate. Moreove r, (8) becomes invalir’ as w

thereby invalidating the simp lif icat ion of the in tegran d , on which the saddle

point evaluation is based. It is there fore  necessa ry  to t r u n c a t e  the number

of leg it imate ray-opt ica l  t e rms  at some 11 = N such that  w N 
is s u f f i c i e n t l y

less than 11/2.
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• D. Ray plus Carion~ca1 Integral Represrutation

In view of the above o b s e r v a t i o n s , one ma•y em ploy ins tead  of (9) the

partial expan sion

1 
- — 

2 ( 1 ) fl it 
+ —

. 
1 ( f l N+ I 1 (13)

• J ’ (ka)  — 

l1’~~~ (ka ) n~ O 
r J ’( k a )

Substitution of (13) into (1) yields

N
G + R  (14 )n Nn=O

where

= 2 f  et~’ t 4 )  4 ) 1  
r~~~~ ( 1 ) N + l  d~ (15)

i (irka) C H’ ~
2
~(ka)J’(ka )V V •

The sum in (14) evidently describes ray contributions having experienced

up to N refl ection s. The remaind er integral R
N 

incorporat es the cumulative

effects of ray fields having been reflected more than N t imes.  It should be

noted that when the observation point approaches the source point so that

Is -+‘ I — 0 , one has — ka even for  it 0, and the ray r ep r e sen ta t ion

fa ll s a l toge ther .  When  N = - 1, no ray cont r ibutions a re  ex t rac ted  and (1 5)

agrees with (1) .

Several options are  open for dealing with RN . One possibi l i ty  is to

explore unde r what condit ions the cont r ibu t ing  range of the i rt tegrand is

• • localized so that approximation methods may be used eff ect ive l y. To this

end , the cy l inder  functions are f ir s t  replaced by the i r  un i fo rm asymptot ic

approximations In term s of A i r y  f unc t io n s . From the behavior  of the inte-

grand ove r the contour C In the v-p lane or the contour  C’ in the w-p lane ,

It may thc!i be shown that  the p r inc i pal c on t r i b u t i o n  to the in t e g r a l  a r i s e s

from the v i c i n i t y  of v ka or w 11/2 p r ovided  t h at the a r c  len gth pa ramete r

a
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‘
~~~~~~~ ‘ 2 a

• and the number of rays are related by the c r i te r i o n  (note tha t  we des i g n a te

• a ray having undergone N ref lect ions as the ( N + 1 ) th  ray)  -

1/’ - 1< (N+l) < 1/ 3 1/2 
(16b)

• 2 (2 A)  2(2 A)

where A = A(ka)  0(1) is chosen appropr ia te l y. When the left - hand side of

the inequality is negative , i .e.  • in the reg ion near t he sou r ce , no r a y -

optical contributions are included. The f i r s t  in equality in ( 1 6b) is r equ i red

to assure that the integrand in (18a) decays  away f rom t = 0. The second

inequality in ( 16b) (and the inequality in (2 1a)) is required to val idate  use of

the Debye approximations in the f i r s t  tern, in ( 1 3), which y ields the geomet r i c

optical ray contribution.

Our cri terion in ( 16b) .  the utility of which is confirmed by the numerical

• calculations in Sec. III. differs somewhat from that obtained by Babich and

Duldyrevt. The numerical factor A in the inequalities (16b). and also in

(Zi a). is not rig idly fixed. This implies tha t the location of the po in t  at

which a geometric-optical ray field splits off from the remainder field

• 
• can be varied. In each specific problem,  the factor A should be chosen

such that the discontinuity in the total field is a minim um when the new

• ‘geometric-optical wave emerges.  The estimated value of ó 0( 1) can be

determined from a knowled ge of the point of emergence  of the d i rec t  ray.

This poin t can be found b y compar ing  the n umerical  resul ts of the direct

ray plus canonical integral represen ta t ion  h e r e ,  or of the d i r e c t  ray  plus

whispering gal lery mode representa t ion  (Sec. E) .  with that  of the exact solut ion

(whispering gal lery mod e and con t inuous  spect rum representa t ion) .  In this

manne r , one f i n d s  from ( 16b)  or (21a )  with N 0 that  y 3. 1 whence

~~~~ 2 (see FIgs. (8). ( 10) and ( 11 ) ) .  This value of A is then used in (16b) •

to determine the spl i t t ing  of f  points of the various reflected rays .  It t u rns
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out that the results are not very sensitive to the  choice of A because of

the over lap  of the c u r v e s  for  v a r i o u s  N. T h e r e f o r e , A can be de te rmined

from the f ir s t  o v e r l a p  reg ion for  N = -1 , N = 0 , .  without the need of p e r -

• fo r ming the compar i son  with the exact solut ion.

Changing var iab les  to t via v = ka + (ka /2)~’~t and us in g

( 1)
H’~

2
~(ka) - ( 2 ) 2/3 w’1 ( t ) .  J’ (ka)~~ - (-j) 213 Ai’ (t ) (17)

where w 1
(t) Ai(t)  + i B i ( t ~ one may wri te  (15)  as

2

N+ 1 iks 2/3
2 

e ( sf-) ‘N~~ 
( 18)

21w ka

where
• iyt w’ (t) N+ l

INN = 
~~~Ai~~t ) w ~ ( t) [\v ~ (t ) ] 

dt (18a)

The contour C~ in the t-plane is in fe r red  f rom the mapp ing and Fig . 4 by

observing that v = ka c o r r e s ponds t o t 0. The integral in (ISa) is ir. a

canonical form analogous to the Fock integral for convex surfaces. Tabula-

tions e4st for selected ranges of y and N~ When N = -1, the resulting ex-

pression in (18) is a valid representation for G in the range of small y.

N 0 defines the domain of the direct ray, N = I the doniain of th e d i rec t

plus singl y reflected ray, etc.

E. Ray plus Whisper ing Gal l e ry  Mode Representat ion

An alternative possibility is to repr esent  RN as a whispering g a l l e r y

mode sum plus an exp licit r emainder,  if C is deformed into CN in Fig. 4 ,

M residues at the poles ~~~ of the integrand l y ing betwee n C and

— 
--

~~~~
• -•—
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must be extracted. One finds

• R~~ = 
m~ t 

G + R \IN

where Cm is g iven in (5) or (7). The rema inder integral  RMN is the

• same as RN except for  the rep lacement of C by CN . It may be s hown

(see Appendix) that the remainder in tegra l  ~~~~ can be app roximated by

R~~~ =~~~ 4 G N . (20)

provided that observation po insts are charac te rized  by wSN . (w~,1+ wM+i )/2 .

1. e., for saddle points W
SN 

well re moved f ro m th e pole sin gular i t ies

• (see Section LII for  a discussion on procedure when this condition is not

• satisfied). Thu s ,

0 -
~~~~~~ 

C + G - 

~ G~~ (21)

The number of rays , (N + i ) ,  is picked according to the criterion

N + i ~~ 
. (21a)

2(2 A)’

F, Near Field and Infinite Plane Limits

Except for the whispering gal lery mode plus continuous spectrum

representation in Sec. B. which is not convenient for numerical  computation .

the other formulation s cannot account for the limiting case ‘j -’O in ( 16a) .

which ar ises  eithe r when the observation poin t approaches the source poin t

(s — ‘0 with ~ fixed) or when the radius of curvature  become s a rb i t ra r i l y

large (a -‘ ~ with s a rb i t ra ry  but fixed).  The lat ter  limit traces the transi-

tion f rom a concave to a plane surface and , if a is allowed to become

negative, f rom concave to convex. We have derived the t rans i t ion  funct ions
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for these cases.

We beg in with G expressed  by (18),with N = -1 , and use t he W ro n skian

relation for the Airy functions together with Cauchy’s theorer ’~ applied to

the upper half of the t -p lane to infe r that , equ ivalentl y .  -

• • — et
~~ (ka ) 2/3 ~ iyt Ai(t)  dt 2- Zir ka 2 J i6 

e Ait (t) (2 )

Employ ing lar ge a rgument  expansions , one may show that

A~(t) - _ _ _ _ _ _ _  + ~~~~~~~~~ -~~< arg t < 0 (23)

where a0, a 1, ... a 10 are given by

a0 1, a 1 - 1/4 • a 2 7/3 2, a 3 -21/64

a4= 0.7143531708 , a5 = -2.07 1282243 a6 = 7. 557254769
(23a)

a 7~~ -33. 32008068 . a 8 161.5948751 , a9 = -10 19. 868939

a 10 =6845.  104932

Then by Laplace invers i on of (Z2 )~

C — f H~
1
~ (k s) 

~ 
b~ ~

(3/2)j + Q(~ 33 h/2) ( (24)

where b , b 1, ... b 10 are given by

b = I , b 1 = j r ~1~~/4/4 , b2 = - 7i/60

b 3 = -7JT e~” ” ~ / 5t 2 , - b
4~~ -0. 4398 134 x 10 .2

b5 = -0. 4109687 x io 3JT ~~~~~~~~~ 
, b6 = 0. 1122 861x i , (24a)

b7 0.9 182 1 21x 10 ~~~~~~~ b8 0. 2 093046x 10 ’5

b9 0. 16 3 7 8 t 2 x 1 0 6
~~~~ ~~~~~~~~~~~~~~~~ , b 1~~ -0. 3623427 x1 0 7 i

All the terms shown have been used for subsequent  numerical  evaluation of C.
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Actuall y ,  the invers ion  y ield s (or the f ac to r  outs ide the braces in (24) the

large a rgumen t  approx imat ion  of (i/2)H~
t
~ ( k s ) .  t he Green ’ s funct io n for  an in f in i t e

perfectl y conducting plane. By inserting the exact limiting value of a — oo

the formula in (2 4)  may be app lied as well in the near field of the source .

To trace the t ran s i t ion  from concave to convex curvature  when the

distance s along the surface remains fixed , we allow a to change contin-

uously from po s itive to negative values via the complex excursion

0 < a r g a~~~ir. To keep s = a  1 4 - ~’I po s itive , it i s necessar y simultaneously

to have arg !4 -4~~~I - arg a. Moreover, one must continuously deform the

integration path in the complex t -p lari e to keep the integral convergent

(exp(i yt) oscillatory) when y is allowed to become complex according to the

rules stated above. These considerations lead to a straight line path along
It

which arg t = - u - / 3 , 2 -n/3 , when arg  a = n. Changing variables t =~~~ ex p ( i 2 rm /3)•

one finds

Iks 2/ 3  w (u~
~~~ ~~~~ 

e tY U d~ 
(25)

where y is aga in given by (16a) and the path C~ proceeds along the real ~

axis. The expression in (25) is the known result for the field on the surface

of a convex perfectly conducting cy linder. By contour deformation about the

singularities at w’~(~~ ) = 0, one derives th e c ree ping wave series , and by

expanston analogous to (23) and Laplace inversion the limiting t ransi t ion as

0. Thus, one may track the field continuously as the curvature changes

from concave to convex between fixed source and observation points on the

surface.  •

~~~~~
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Iii. Numerical  Resu l t s

Extensive  n u m e r i c a l  compu ta t i ons  have been pe rformed f o r  ka = 10 ,

30, 50 , 100 and 1000 to check the accuracy and range of validity of the

various formula t Ions  in Se c tion II. Resu l t s  are  presented  in Figs. 6 - 12.

for ka = 10 , 100 and 1000 onl y sin~~’ all of the r e l e v a n t  fo r m u l a s  app ly to

ka = 30 and 50 with accu racy  s imi lar  to tha t obtained for the larger values

ka = 100 , 1000.

Except for the low (ka) values (ka 10),  the whisperin g g all e r y  mode

and continuous spectrum representa t ion  in (3) ,  for a rb i t r a ry  y, has bee n

taken as the reference solution , with which the other results are compared.

The failure of this representation for low (ka). as evidenced by the oscillations

in the curves in Fig. 8(a) for  small ‘y, Is attributed to diff icult ies in
It

evaluating the eigenvalues of the whispering gallery modes with sufficiently

high precision; for the larger (ka) values , the uniform approximations in

(6) are adequate. A remarkable feature of this representation is the

sensitivity of the field to the exact numbe r M
1 of whispering gallery modes ,

as evidenced in Fig. 6 for ka = 100. Here , M
1 32, and any deviation from

thi s number  causes oscillations about the true field magnitude.

It can also be seen from Fig. 6 that as the number of whispering

gallery modes approaches M 1 = 32, the field magnitude also approache s the

true value. The continuous spectrum is necessary  to establish the near

field for moderate y. Anal yticall y , this means tha t the Neumann function

in (4b) together with the discrete  spectrum (wh ~er ing gal lery  modes)

produces the prope r singulari ty near the source point. Omission of the

continuous spectrum leads to e rr o r s  that can be assessed in Fig. 7.

I
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The ray plus canonical integral r&-present .ition in (14) is seen to pro-

vide an excellent approximation for all cases (i. e. . for ka = 10 , 100 , 1000)

as shown in Figs. 8 ( a) - (c )  provided tha t the number  of r ays  (N+1 )  is chosen

according to the c r i te r ion  in ( 16b) .  Be cause  of the over lap  of the curves  for

various N. no d i f f icul ty  ar i ses  in swi t ch ing  f r o m  one formulation to th e ot her

as ‘~ varies.  Tabulations of the canonical integral in ( I S a )  are g iven in

reference 9 for  the perfectly conducting boundary and for non-vanishing sur-

face impedance. When ka is small , this  re presentat ion may serve  as a

.reference because It does not exhibit the sensi tiv i ty  (see Fig . 8(a))  encountered

with the whispering gallery mode and continuou s spec t rum formulat ion .  As

shown In Fig. 11(a). the ray plus canonical  in tegra l  representa t ion for  small

ka agrees well with the near  field expansion in (24) .

The most in tr i guing and phy sicall y most appealing for mulat ion is ba sed

on the mix of (N+i) rays and M whispering gallery modes in (21). The

‘whispering gallery modes plus the last term in (21) account for the field near

the surface where geometrical optics becomes invalid . Because of the in-

equality (Zia) that must be satisfied by the number of rays , N+t . the inclusion

of multiply reflected rays  requires la rger  separat ion v between source and

obsers~ation points . For any given N , as ‘.
~‘ increases in Its app licable r ange ,  ‘

a new whispering gallery mode must be included whenever the N- t imes  re-

flected ray touche s the caustic of that mode. The process for N=0 is depicted

in Fig. 9a. The concentric circles show the modal caustic s of the whisperin g

gallery modes while the angle wK represents the el
genvalue of the K-th mode.

Within the ranges of P1. P2 and 
~ K ’ one must include the M 1  , M 4  and

M K modes. Corresponding curves for I G !  are shown in Fig. 10. It

should be noted that the d i rec t  ray plus whisper ing ga l le ry  mode rep-

resentation yields a good approxin~ation for y ~ Z(Z IA) + . This
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re presen ta t io n , h owever , is not recommended for large  values of y s ince

many modes mus t  then be included, For example , N 0 , M = 24 , at

y • = 10.

Inclusion of reflected ray s , when appropriate , reduces the number of

required whispering ga l le ry  modes , as de picted in Fig. 9(b). Thu s , at

the observation point P(a,~~) ,  inclusion of onl y the d i rec t  ray (N=0) requires

six whispering gallery modes while inclusion of the direct  and sing ly re-

flected rays (N = 0 , 1) re quires only a sing le mode , etc. Fig.9(b ) also shows

that the app licable range of the sing le mode plus ray represen ta t ion  becomes

wider as the number of rays increases. As seen from Figs. 11(b)-(c), it

is possible to represent  the field accurately with onl y the lowest (most

tightly bound) whispering gallery mode provided that a higher order  re fl ected
If

ray is inc luded , when necessary ,  as ‘i increases. Accordingly. although

(21) is a good representation for the ran g es sa t is f y ing the inequality (2 1a) ,

the ’sirnplest and physically most appealing expression will be (21) with the

in~quality (16b). Figs. l1 (a) - (c)  have been obtained with the inequality (16b).

These results are surprisingly simple compared with the whispering gal lery

mode and, continuous spectrum rep resentation , for which 32 modes for

ka = 100 and 319 modes for ka = 1000 must be included in order to obtain

accurate field values. In Figs. 11(a)-(c). the number indicated along the

curves should be read as follows : for example , M=2 IN = 1J .denotes the
range wherein the direct and singly reflected rays plus 2 whispering gallery

modes are applicable , while the circles indicate the starting points of the

relevant intervals.

Analytically ,  the emergence of a whispering gallery mode (contact of

ray and modal caustic) is charac te r ized  by the coalescence of a pole and a

saddle point in the remainder integral RMN. Therefore , the field in (21)

— —  - - — --- -- - -- - - ~~~~~~~~
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is discontinuous at these points. The discontinuity can be avoided on use

of a Fresnel int~~ raI transiti on function
8 in the v ic in i ty  of these ‘y values.

• However ,  we have found tha t  cor t inu i ty  can be es tabl ished by using the

simple result  when pole and saddle poin t coincide  ( this  c o r r e s p on d s

• essentiall y to the mid point  be tween  the two d i scont inuous  end points)  and

then r e sor t ing  to a p e r t u r b a t i o n  expansion.

The ray and whisperin g gallery mode representation is invalid in the

near field but it can there be joined to the near field expansion in (24). Con-

cern ing the l a t t e r , i t should be noted in Fig. 12 that inclusion of more

perturbation t e rms  does not lead to continuin g improvement  or ex t ension of

the range of validity; for ka = 100 , the per turba tion t e rms  u p to y 21/?’Z seem

to g ive the best result .  The near field forms with 8 per turbat ion te rms are

shown in Figs. 11(a)-(c) for ka 10, 100 and 1000, respectivel y. From If

each figure. one can see that the changeover from the near field form to

the direct ray plus lowest whispering gal lery mode (i .e.  • M = i)  representa-

tion can be performed at the crossover with negligible error .

-
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lV. Conclusions

This anal y t i ca l  s tud y of the c h a r a c t e r i s t i c s  of the su r face  field induced

on the concave side of a p e r fec t l y conduc t ing  c i r cu la r  cy l i n d e r  by a magnet ic

line source  located on the su r f ace  has iurni~~hed a basic under s t and in g of the

propagat ion mechan i sms  that  a re  opera t ive  in var ious pa ramete r  ranges

involving source and observat ion  point location , cylinder radius and wave

frequency. Alternat ive representa t ions of the field solution have been given

and their re lative accuracies assessed by extensive numerical calculation.

‘The results have been discussed in detail  in Section III. They permi t ,  in

particular , a quantitative appraisal  of when , and under what c i rcumstances.

geometrical  optic s beg ins to play a role , and how the geometric optical field

must be modified to accoun t eithe r for  near  field effects  or for  improper l y
If

formulated ray fields that have undergone many reflections. Quite re-

markabl y . th e la t ter  can be accoun ted for by inclusion of onl y a single (the

most tightl y bound ) whispering gallery mode and a partial ray field , althoug h

othe r possibilities exist that incorporate several  whispering gal lery  modes.

The asymptotic field solutions have been cast in a form that permits
4

generalization to variable surface curvature  or variable surface impedance

although some questions remain to be resolved.

• Calculations for surfaces with finite surface irnpedence Z have also

been performed , as have tabulations of the numerically evaluated canonical

• integral , for Z 0 and selected values Z ~( 0. These results will be

• presented elsewhere9 .

-- ~~~~~~ I
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Appendix - The Remainder Integral R~~~ .

As noted in the text , the remainder integral  RMN is the same as

RN in (1 5) except for the rep lacement of C by CN in Fig. 4. With the

aid of the Wronskian relation

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~ (~~~~~(~~~ ) H~
2
~(ka) \

iir kaJ ’ (ka) H’~
2
~ (ka) 

= 
~~t~ J’ (ka ) - 

W (2) ( k ))  
‘ (26)

R~~~ can be represented by

N+i /3 (ka) H~
2
~(ka) \ .

RMN= ~~~~ 

~~~~~~ 

- 

W~~~~ a)~~~~~~ 

4’~~~ dv (27)

Along the contour CN one may use in the integrand the Debye asymptotic

formulas (see (8), and .sirnilarly for the undifferentiated cylinder functions)

to obtain

. N+ 1
~ 

(
tan 3ka [cos w - (f~ w)sin wJ+ ir~ •) ~

1kaq~~(w)~

(28)

where q~~(w) and are given in ( lOb)  and ( 11) ,  respectively. If

WSN (w M+j + wM)/2 . the asymptotic evaluation involving the tangent

fb.nction in the integrand of (28) yields a negligIble contribution compared

with the remaining te rm. In this case , referring to ( lO a)  and (12) ,

RM~~~~ 
- 0N ( 29)
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FIGU RE_C A P TI O N S

FIG . I Di rec t  and mul t ip l y r e f l cc cd r a y s  for  a c i r c u l a r  b o u n d a r y .

FIG . 2 Reflected r ay  c a ust i c s .

• FIG . 2(a) Caus t ics  A~ for  rays  r e f l e c t e d  n t imes ;  these  ray  con -
t r ibut ions a r e  confined to the reg ion b e t w e e n  A and th e
boundary .

FIG . 2(b) Caust ic  format ion  due to sing l y and doubl y re f lected r ays .

FIG . 3 WhIsper ing g a l l e r y  mode: moda l  field , modal r a y s  and c a u s t i c

FIG . 4 Integrat ion path and s i n g u l a r i t ie s  in comp lex v -plane.

x -- zeros v of  H’ (2) (~~ ) .. - - zeros  v of 3’ (ka).• p V m v

is the steepest d e s c e n t  path throug h 
~~~~~~~~~

FIG. S In tegra t ion  paths and sing u lar i t i e s  in comp lex ~v-p lane
(v ka sin w). C~ co r re s ponds to C in Fig. 4 and can be
deformed into the s tee p e s t  d esc e n t  pa th  C’ t h r o u g h w—— zeros  ~v of J’ (k a) ;  the poles w a r e  not shown.

in v p

FIG . 6 Whispe r ing ga l le ry  (W.G. ) modes plus con t inuous  spec t rum.

FIG . 6(a) Few modes. . • -

FIG . 6(b) Many modes.

FIG. 7 Effect of continuous spect rum

FIG . 8 Ray plus canonical  in tegra l  r ep resen ta t ion . Both the y and
I - I~ -~ ’I coordinates arc  indicated.  The range s in y and
¶ ~~~~-~~~~ ( co r r e spond ing  to N -: - t  (no geomet r i c -op t i ca l  ray)

in ( 14) ,  N = 0( 1 ray),  N = 1(2 rays)  and N ~(3 r ays )  are  as
shown.

whispering gal lery modes and continuous spect rum

• • • I G I  I R N~~I ( . — • _._._  JG~~_0 + RN O  I
4 1 2
II —..——..------~~E C + R  I —‘

~~~
—‘ • —•‘—  G + R  In 0  n I n=0 n 2

FIG. 8(a) ka = 10

FIG . 8(b ) ka = 100

FIG. 8(c) ka = 1000

FIG . 9 Geomet r i ca l  i n t e r p r e t a t i o n  of d i r e c t  ray plus whispe ring
gal le ry  mode r ep re sen ta t i on

FIG . 9(a) N 0 (d i rec t  ra y onl y)
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FIG . 9 (b) N = 0 , 1 , 2

FIG . 10 Direc t  ray plus ~vh i sp cr i r i~ g a l l e r y  mode r e p r e s e n t at i o n .
M = K i nd i ca t e s  poin t of em e r g e n c e  of K - t h  W. C. mode.
The solid curv e is calculated from (3).

FIG . I I  Ray plus whispering gallery m~ode representation. The solid -

curve s serve as r e fe rence  solut ions.  Here , the Ith -o ’I
- coordinate is not shown since it has been de pic ted  in Fi gure  8 . -

M=K[N=o] K 
-

o—..--.----. — k1 
~~ N=O +

~~~=~ 
C

• M =K [N= 1]  1 K
o—~ -—— .~- ~3 I = j E OG +~~~~j G

~~~~~
G N j I  

-

M= 1[N=2 ] 2

~~ 1GI~I~oG + G  - 

~GN Z I  

near field form

- FIG . 11(a) ka 10 (M 1
3). The solid curve is calculated from (14)  and

(18).

FIG . 11(b) ka 100 (M 1 32). The solid curve is calculated f rom (3).

FIG . 11(c) ka 1000 (M 1 3 19). The solid curve is calculated f rom (3).

FIG. 12 Near field form. ka = 100
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2. Hi g h Frequency Field s Excited by a Line Source
Located on a Concave Cy l indrical  Impedance Surface

by

T. Ishihara and L.B. Felseri
Department of Electr ical  Engineering

Polytechnic Institute of  New York
Brookl yn . New York 1120 1

Abstract

A previous stud y of high frequency currents induced by a line source

on a perfectly conducting concave cylindrical surface is extended to the case

of non-vanishing surface impedance Z8. Alternative field representations

• are formulated and evaluated asymptotically as combinations of ray optical,

whispering gallery mode, surface ’wave, continuous spectrum, and canonical

integral contributions. Numerical calculations provide an insight into the

accuracy and utility of the various formulations. Sufficiently far fr om the

source point, a combination of ray optical fields and tig htly bound whisper-

• ing gallek y modes was previously f ound to be a most appealing form when

Z = 0. As the surface impedance becomes more dissipativ e, the whisper-

ing gallery modes are weakened by attenuation and eventually render the

ray optical fields adequate by themselves. A representation in terms of

rays and a canonical integral is found to be useful for all parameter ranges.

The canonical integral has been evaluated numerically and tabulated.

This work was supported by the U.S .  Army Research  Office. Durham .
North Carolina , under Contract  No. DAHC 04-75 -G-0 152.
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I. Introduction

When high-frequency f ie ld s impinge on a concave s u rf a c e  with larg e

radius of curvature , the induced field s thereon diffe r markedly f rom those

for the well explored convex case. A recent studyt has dealt in detail with

the two-dimensional problem posed by line source excitation on the interior

boundary of a perfectl y conductin g c i rcular  cy linder. Alternative field

representations.  accounting onl y for propagation phenomena on the surface

segment between source and observation points, were formulated and

evaluated asymptotically. The field expressions so obtained were inter-

pr etable physically in terms of constituents involving whispering gallery

modes , ray-optical  field s, near field effects , continuous spectrum and

canonical integral contributions. Extensive numerical comparisons showed

the accuracy and range of applicability of each. This investigation has

provided fundamenta’. physical and quantitative insig ht into the field be-

havior on the perfectl y conducting boundary.

In the present paper. the analysis is extended to accommodate sur-

faces with non-vanishing surface impedance Z~ . Because the alternative

field representat ions (Section II) for Z5 ~ 0 a re  derived by the same

techniques as those for Z 5 = 0 . the presentat ion is kept concise, with

frequent reference made to the earlier stud y t fo r some of the details.

Representative nume;ical calculations in Section III show how increasing

surface impedance affects the surface field. When losses are appreciable.

the closely bound whispering gallery modes are rapid ly attenuated , leaving

a properl y fo rmulated ray-optical field as the dominant and adequate

contributor.

• 
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-
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II. Al te rna t ive  Representa t ion s

• A. Basic G r e e n ’s Function

The re levant  m agnet i c  line source  Green ’s func t ion  f~ r the i n t e r i o r

of a c i rcu la r  cy l inder  with radius a and cons tan t  su r f ace  impedance Z5

is formulated In an inf in i te  angula r space wherein thc az imutha l  coord ina te

+ ranges f rom - cct o  ~~~~~ 
2 With the source  point located at (p ’ , 4,’)

a cy lindrical  (p.  ~~) coord ina te  s y s t em , th e G r e e n ’s funct ion sa t i s f ies  the

inhomogencous wave equation

• (1 -
~~~ 

p + + k 2) G(p, p ’) = - 
t

6(4, 4,I)6(p p I )  (1)
p p  p 

p 84~ —~~~ p

• with an “angula r radiat ion condi t i~ d’ in t he 4, direct ion , and the radial

boundary condition

• ~~G = lkZ’G at p = a ; C finite at p = 0  
- 

( I a )

Mere V = Is a normalized surface Impederice . and Z0 Is the

impedance of free space. A time factor exp(- iwt ) Is suppressed.

Expressin g the Green ’s function G as a contour Integral  and re-

moving di f f rac t ion  effects  at the ori g in ar is ing f rom the “ angular ly  matched”

condition 2, one obtains a modified form that contains onl y the essential

propagation phenomena from the source poin t to the observation point in

the presence of a cy lindrical boundary segment.  When the source and

observation points are both located on the impedance boundary (I. e . ,

p = p’ = a) the modified Green ’s function 0 becomes

I expj iv t d ~-d.’ l 1
i(ir ka) a [J’ (ka)

~~
iZ’J

~
(ka)][II, (ka)-IZ’H,, (ka)J
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where k is the f ree-space  wavenumber , and the pr ime on the cy linder

functionz denotes the der ivat ive  with respect  to the a rgument .  The contour

C and the singulari t ies of the integrand in the comp lex v -p lane are  shown

in Fig. I .  In the lossless limit V = 0, thi s fo rmula t ion  red uces to th e one

in reference 1. -

Antici pating subsequent  contour deformation in the com plex v- plane ,

we examine the location of the pole s ingular i t ies  V determined by the

resonance equation

J~, (ka) -iZ’J~, (ka) 0, i-n = 1, 2 , . . . ,  M 1, Rev m> 0 (3)

‘These poles in the in tegran d of (2) descr ibe  wh i spe r ing  gallery modes. For

the special cases arg Z ‘
~~ ± 900 , th e roots Vm are real . LI for  arg  Z t =_ 900,

the magnitude IV !  of the normalized impedanc e is greater  than a certain

value , one finds for  the f i r s t  root m=l  that v 1 > ka . Th e cor res pondin g

field contribution then describes a surface wav,e that can exis t also on a

plane boundary.  It is interest ing to note that all of the whisper ing gallery

modes re present fast waves when the boundar y is perfectly conducting.

However , for V ~~ 0, there may exist slow-wave type whispering gallery

modes with Re v > ka , which become surface waves when Im v = 0 , in
m m

addition.

To facilitate the numerical evaluation of the poles in (3), it is ~

‘

convenient to separate the domain Re v m > 0 Into two parts. In one of

these, where I v  ka , the Fock approximations for the bessel

• functIons are applicable:

~ 
(ka) ’ (2/ka)~~ i(t ) , 

- J’(ka) _ (2 /ka) TAL ’(t)
(4)

1 2  1 1 2
kka) (2/ka) ~ Wj , 2(t) . H ,~ 

‘ ~(ka) — -(2/ka) ~ w’~ 2(t)

where 
•

w1 2(1) = Ai(t) i I Bi(t), v = ka + (ka /2) ~t (4a) j

J
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The resonance equation for the f i rs t  ~~ whispering gal le ry  modes bound

most closel y to the impedance surface  is then approximated by

AI’(tm) + iaAi(t m) 0, m 1 , 2, . . . , ~~~ , a =  Z’(~~~~ (5a)

where the t are  solutions of the d i f fe ren t ia l  equation
m

dt -

m I
= , c -ia (5b)

d~ ~

In the other domain, where I v  -k a 1> O ( I v I ~~) , one may employ the D.ebye

approximations

J (ka) 
~~~ f f k a c o s w sin [ç(w) + ~ /4]

• J ’(ka)~~~~~~~~~~~~ cos [~~(w) + ~/41 (6)

~
I .  

_ _H~
2
~(ka) .i[kacos w e x p [± i~. (w)~~ j it /4] 

-

(1) —

H~
(2) (kaY. .J2~~~

5
~~ exp ~ i~~ (w) ÷ iu /4]

‘ with .‘

ç,(w) = k a lco sw- (u ’ /2 - w)sin w] ,  i’ =k a sin w. Re w > 0 (6a)

to obtain the resonance equation 
•

cos wm cos[~~(wm) + ir/ 4J - iZ’ s in f T~
(Wm) + ff 14] = 0, m + 1 . .. .M 1 ~7)

-
~~~~- 

-
~~~~~~-~~~~~
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It is found that the two approximations in (5a) and (7) have an operlapping

domain wherein one may switch from one to the other. For the case in

Fig. 2, M =  4 has been found sat isfactory.

B. Whisperin g Gallery (W.G. ) Mode and Continuous Spectrum
Representation

When the contour C in Fig. I is deformed into a contour ex-

tending along the imag inary v — a xis, the Green ’s func ti on can be re p resen ted

as a sum of whispering gallery (W. 0.) modes and a continuous spectrum

RM 1

o + R  (8)
m Mm=t I

where 
— ____

~ 
(ka) exp[iv~~ I +- •+~ 

•I + i~~ /2]’ 

- • -

= k a (a/ a v  ) 
~~ 

(ka).. iZ’J~, (ka)) •

with the V
m 

satisf y ing the resonance equation in (3). In obtaining the

• residue contribut ions in (9) due to the poles at V m D the Wronskian

relation

- 
~ ç ~ ~~a) H,~

2
~(ka)

~ kaIH (k~~-iZ’H (k~~][J~ (k~~~iZtj ( k a ] 2~~Jt (k ~~~i ZIj (k ~ H~~(k~~-iZ ’H~~(k~~

(9a)

has been utilized.. Using the Fock approximations in (4) and (5), one

find s 
-

exp(iks + i’yt - iff /Z ) —
.

2 m e t . . .  M (10)
2(ka/2) 3(t + a )
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where

s = aI+ -+ ’ I , -y (~~~~ ) 3 
~ ( IO a )

Here , s denotes the path length between source  and observat ion point

along the boundary, and -y is an arc len gth parameter .  For the remaining

• 
- 

modes , ( 6) and (7) may be used t o obt.iin

exp(iks s iri w + in’ /Z)
• G — m 

,m / , , 2 1
ka(u / 2 _ W m)C O S wm [1 - (Z ,‘cos wm) ]

• ( I I )

• From the behavior of the roots as discussed in Section A , one can see that the

residue contr ibut ion ar is ing from the m=i pole singularity at t 1 ( th e f i r s t

root of (5) )  descr ibes  either a whispering gal lery mode bound most closely

to the impedance boundary or a surface  wave mode when Re t 1 > 0,

1mt 1~~~~O . In the la t t e r  i n s t ance , G1 in ( f O ) becomes a surlace wave lield .

• As in the lossless  case , the continuous spectrum

_ ico ,

— 
I exp(iv

I j (tr ka) -i~~ [3’ ( k a )_ iZ ’J ~ (ka) ]  [Ht  ( ka ) -iZ ’H~ (ka)]

can be approximated by

I 
~ 

exp(-k s slnhv) ~J z ~.&V (i2a)
1 o 1-(Z’/ coshv)

C. Ray-Optical  plus Slow Wave Representat ion

With a view toward a ray-optical representation , It is convenient

to deform the contou r C in Fi g. 1 into ~~ , whence 0 becomes

G =~~~~ + G~ U(t
1

) - 
(13)

- —•--
~~~~ 

—•-
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where G is the same as 0 except for the rep lace ment of C by ~ in (2 ),

and 01 is the contr ibution (if any )  f rom the pole sing ular i ty  at t 1 loca t ed

betwcen C and ~~~. The unit ste p funct ion U(t 1 ) contr ibutes  onl y when

• the t 1 pole lies between the two contours.  The extract ion of G 1, which

• i-nay be eithe r a slow wave W.G. mode or a surface wave , is des i r able

since slow wave fields do not exhibit ray-optical  prope rties.

To convert ~ into ray- optical form , we substitute the traveling

wave expansion

J
~
<ka)

~
iZ’ J

~~
(ka) 

~~~~~~~~~~~~~~~~~~ n~0 
(-r)~ . I r k i  (14)

H
~~
’
~
(ka)_iZ’Hj’

~
(ka)

r = (2’ ‘2’ 
( 14a)

H’1, ‘(ka)-IZ’H1,’ ‘(ka)

I
Into ( 2), with C and C replaced by 0 and C , respectively. Then with

the Debye asymptotic formula s in (6), changing variables from v to w via

v = k a slnw , -

( 15)
n 0

• whe re

— 
. n  2 / ~ fl Ikaq (w)

(‘.L) cos w cosw-Z’  n

(cos w + Z’)
2 (~cos w+Z’) 

e dw (ISa)

and

q~(w) = I$ -4 , ’I sin w + 2(n+ 1) [cos w - ( u /2-w)sifl W) (ISb)

The integral in (IS a)  can be evaluated in terms of the contributions from

the saddle points w an and 5 of q~ (w), determined f rom the condition d q ~~Idw 0:

- ~~~~~~~~~~~ - !. ( 16W 2(n+I ) ‘ a 2
•

~~~~~~~ 

. -
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A typ ical path C~ p assh ig  t h roug h the n - t h  saddle po int is shown in

Fi g. 3 (note that  the wh i spe r ing  gal l e ry  mode poles W
m 

have been el imi n ated

from the in tegra n d  in (15 a ) ) .  U pon u sing the conventional  saddle point

formula ( r e f .  2 , p. 382) one f inds

• — ~~~~~ /~~~~~ ( . ) n (rn?’cos 2wsn exp(ikD ) 
(17)

n -v irk ( cosw + Z ’ ) [ i~~~

where

= 2(n+1)asin [14,- .s’I/2 (n+ 1)] (17a)

and is the boundary re flect ion coefficient for  ray species n .

cos wanrn — cos w  +z’ ( 17b)
Sn

The expression in ( 17) correspond s to a geometric-optical ray field that

has undergone n reflections at the impedance boundary (see Fig. 4). The

sum in ( 15) can actually not be extended to n-~ ~ since the Debye approxi- 
• -

mations in (6) become invalid as ~~~ -~~ir /2. This situation arises either

when the observation point approaches the source point so that

or when the number of rays increases, with 14 -4 ’ I fixed. The latte r case

can be avoided by truncating the number of rays at some n = N such that

is sufficiently less than it /2  (see Sec. D) while the forme r case will

be discussed in Section F.

D. Ray plus Canonical Integral plus Slow Wave Rep resentation

When inst ead of (14) the partial expansion

I — 2 n ________________

J’ (ka) - iZ ’3~ (ka) 
~~~~~~~~~~~~~~~~~~~~~~ n=0~~

’
~ 

‘
~ J’ (ka) - iZ’J (ka)

• ( 1 8 )
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• is substituted into (2) (with C and C replaced by ~~ and ~~~ , respec t ivel y),

one has instead of ( 13)  and ( 15)

• C 
n~ 0~~~ 

+ R N + G 1
U(t 1) ( 19)

whe re

N+ 1 .

— 
I _ ( - r )  exp( i v t - d ~’ )

i(irka) ~ j H ’~ (ka) - iZ’H,, (ka ) ] [ J ,(ka) - iZ’J~(ka)]

(19a)

~~~ 
g iven in (17) . again describes a geometrical ray field having undergone

n reflections. The remainder term RN accounts for ray fie lds reflec t ed

more than N times.

One way of dealing with ( 19a) is to investigate how fast the integrand

decays In the neig hborhood of the point v = k~ ; rap id decay permits effective

truncation of the integration path and the use of fur the r approximations.

Proceding as in the Z’ = 0 case , one may show that the main contribution

to the Integral arises from the neig hborhood of v = ka provided that the

arc length parameter y defined in ( lOa )  and the number of rays (N+I)

satisfy the left-hand portion of the Inequality

• 
• • I - I <(N+ 1 ) < (2w

2(Z~ A~ 2( Z TA)

where A = A ( k a , Z ’)  = 0(1)  and I z ’I  <<.1. The rig ht-hand portion of the

• inequality validates use of the Deb ye approximations In the first term on

the rig ht-hand side of (18), which has been used to derive in (17). The

complete inequality In (20) provides a criterion for the number of geometric

optical ray field s that are identified in (19). The precise choice of A is

not too importa nt ; a value A 2 has been found adequate in our various

numerical comparison s t ( Sec. LII).



Since the contr ibut ing po rtion of the in teg rand  in ( 19 a)  is localized

near  zi ka , one may substi tute the asymptot ic  approximat ions  (4)  to obtain

RN 
( -f t~~

t ex p (jj~s )  ( ka )~ I ( ~~a) a = Z ’ ( ~~~)~ (21)
Ziu ka

Here , l~~(~y . a)  is the canonical integral

f (w ’ (t) + i ow (t)}/ {w ’ (t) + iaw (t) } 1
N+ 1

— r 1 1 2 2 ~~~ (22)• N ’~ ’ ~~ I w~ (t )  + iaw 2 (t )j  [Ai ’ (t)  + iaAi (t ) ]  e
t

with the path C~ in the complex t plane obtained f rom c in the complex

v -plane by the shift implied in (4a ). The canonical integral  in (22) has

been evaluated for relevant ranges of y and three value s of a. The results

are shown in Fig. 11 and have been tabulated 5. The canonical integral for a

related boundary value problem corresponding to a dif ferent  integrand and

to a = 0 has been tabulated by Babich and Buld yrev.  6

E. Ray plus Whispering Gallery (W. 0.) Mode plus Slow Wave
Re spre sentation

• An alternative way of treating (1 9a) is to deform the contour C into CN

ln Fig.3and thereby representing R~ asa sum of[M-U(t1)] W.G. modes whose

poles lie between C and CN. plus some other remainder term RMN.

Referrin g to (9a), one find s

RN ..~~ m + R~~ ,1 = I +U(t 1) (23)

where

- _ _ _ _  ~
, a a 

)N+ 1 i VI 4 ~ 4~’I dZir ka 
~ [J , (ka) _ i Z’J~ (ka) - 

H’~
2
~(ka)- iZ ’H ~

2
~(ka)J 

r

(24)

The sum In (23), with 0rn g iven in (10) or ( i i ) ,  describes W. G. mode

_contributions . • .

• 
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The evaluation of in (24) may proceed by the saddle point

technique, af ter  replacement of the cy linder functions by their Debye

approximations as in (6). The integral then becomes:

/ ~ N+I• . N+ 1 I r ,~~ . ~‘I i
— (-i) 

~ I coswtanj ~~( w ) + i r / 4~ - 
i c o s w  j 1c o s w - Z i.kaq (w) dRMN ~ I cosw-iZ’tan

~~(
w)-4-

~~7~f 
cosw+Z ’ Itcos~v+z’J 

e N w

N I -  .1~~ /
~(25)

where ~, (w) is given in (6a) and q~~(w) in ( 15b). For observation points such

that the saddle point WSN of (25) is located far from the pole singularities

• of the integrand , and for a low loss impedance , the contribution from the

f i rs t  term inside the square brackets in (2 5) is neg li g ible when compared

with that from the second term. Then f rom a comparison of (25) with ( 15a)

and (17)

Z~ ‘ 6 ’RMN - 

~ ~~ 
(I - cos w ~ • ~2

Thus -

G - 
~~n +

~~~~~~
Gr n 2 GN (1 Cos w5N

) (27)

F. Near Field Form.

As observed at the end of Section C (see also (2 0)),  any Green ’s

function representation that includes geometric optical terms fails in the near

• field where the arc length parameter y in ( IO a)  is less than 2 (2 5 A)2 . We

• therefore go back to the basic integral representation in (2). Since the main

contribution to the Integral arises f rom the vicinity of v ka , the cy linder

functions may be r eplaced b y their Fock approximations in (4)

Then using the Wronskian relation for  the A i ry  funct ions  (analogous to (9a)) and

appl ying Cauchy ’s theorem In the upper half of the complex t -p lane, one finds



___ 
- - 

~II’1T ~
— 

~~~~~~~ 1

2 +30-16
— -exp( iksj (ka ) -

~ ~
‘ At ( t ) exp( t ’y t )  dt (28)

Zir ka 2 A i ’( t )  +j aAi (t )

Employ ing lar ge a rgument  expansio• ns for the A i ry  func t ions .  one may

generate art asymptotic expansion of the intcgrand in (28):

- Ai ’(t) + aAi(t) 
- 

j~ O ~~~~~ 
+ o(t 23

~
’2) (29)

where all of the te rms retained (i .e. , up to 5 = 2 1) were employed in

subsequent numerical  calculations. The coefficients a0, a 1 . a21

are given by •• - -

L
• 1(ia) , j  = 31

1=0 ~ ‘

L
a. = ‘

~~~ d. 1(icz) , j = 31+1

~ 1=0 ~ ‘

L
~ d. 1(ia) 3

~
12 j = 31+2

1=0 ~

where

dj, L
_ I dj L l =~~(i~ 2)/4 d 6 0  = 7/32

d. L =d. 
~ -2 + 9/32 + 2 (j -7 )/ 32 ,  for j  = 3L+i , 3L+2, (L~~ 2)

3’ 3 ,
dj L 2 =dj  1 L 3  + 9/ 32 + 2 ( j -7)/ 3a .  for i = 3L (L~~ 3)

d9 0  = -21/64 d100 = -49 / 64 d 1 1 0  = -85/64

d129 0= 
0. 71435 d12,1 = -130/64 

d131 0 = 1.64062

- 185/64 d 1 4 0 = 2. 8 1 19 8 2  d 1 4 1 = -251/64

d 1 5 0  = -2.07128 d 151 1=4 . 29687 d 1 5 2 = -329/64

d 1 6 0 -4. 64 329 d 1 6 1  = 6.1 2059 d 1 6 2  -420/64 (29a) •

-7. 81345 d 1 7 1 = 8. 34373 d 1 7 2 = -525/64

d 1 8 0 = 7 . 5 5 7 2 5  • d 1 8 1 = 1 I . 6 9 2 8 3  d 1 8 2 = I 1. 02 2 9 3

• d 183 = -645/64 
- 

d 1 9 0 = 16. 57034 d191 = - 16, 4017

• L
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d 192 = 14. 21873 d 1 9 3 = -.781/64 d 2 0 0 = 27.291 29

d 2 0 1 = -22 .09779 d 2 0 2 = 17.99556 d 2 0 3 = -934/64

d 21 ~ 
-33. 32008 d21 1 = 40.01068 d = -28. 92270

d 2 1 3 = 22. 42181 d 2 1 4 = -1105/64 
21 , 2

7
Then by Laplace inversion of (28) . with (29) .

• iks+i sr/4 
~2G — e I + b. ‘i-” + O(’y ) , f~~~ ( < 1 (30)

~~~~~~~ Tk s  j=1 ~

where

b
3 = 

J~ a. ei( 
~~~ (~~ 1 ) ! . j odd (30a)

25/2 a. e~~~ 5}/ ~ (2m- 1) ,  j even
3 *n 1

I

The restrict ion < I in (30) ar ises  f rom the condition l aA i ( t ) /A i ’ (t ) f < 1 ,

required for  validity of the expansion in (2 9) .  In view of the definition of 
-

a in (5a), the solution (30) can therefore  not be app lied to the infinite

plane limit a —~~ if V d i f f e r s  f rom zero .

• . 

•-

~~~~~~~~

-•

~~~~~~~~~~~~~
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ILl. Num e rical. Results

Extensive nuriierical computations have been performed for ka = 100

and for var ious surface impedance values to s how how the amp li tude and

phase of the surface impedance affect the field , and t o ch eck th e accu rac y

and range of validity of the various formulations in Section IL

Concernin g the propagation constants for  the W.G. modes , we have

obtained solutions of the differential  equation (Sb) by the Runge-FZutta

method. The results are shown in Fig . 5. Here t 1, t 2 and t 3 are the first

- three roots of Ai’(t~~) = 0 (i. e. , a = 0 in (5a) ) and 2 and t are those

of Ai(t ~~~ ) = 0 (i. e. , a = cc in (5a)) . The solid lines and the dotted lines are

equl-p hase and equi-amplitude cu rves , respectively. The arrows on the

equi-phase curves indicate the directions along the root loci with increasing

amplitud e ~j . It is interesting to note in Fig. 5 that the f i rs t  zero t 1

crosses the imaginary axi s for some values of ~ , thereby furnishing the

slow wave type of whispering gallery mode. In particular, when Re t 1> 0,

Im t 1 = 0, the contribution from t 1 describes a surface wave mode.

Except for arg V = ± 900 
, the imaginary parts of the whispering gallery

mode poles become large as the amplitude of Z’ increases within the

ranges under consideration (i. e. , Z’ I < 0. 6). It should be noted in

Figs. 2 and 5 that , for g iven V and arg Z’ i~ ± 900 , the eigenvalues for

modes bound close to the surface have large imag inary parts compared to

those located far  from the surface, thereby de-emphasizing the importance

of the most closely bound whispering gallery modes. Thi s is to be expected J
on physical grounds since the field of the tightly bo*.uid modes is in close

proximity to the lossy guiding surface. It can also be seen from Fig. 2

that the two approximations given in (5a) and (7) have an overlapping region

wherein one can switch from one to the other. ~~ = 4 has been found
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satisfactory for our evaluation of the field.

In Figs. 6-7 , we have compared the various formulations in

Section II for a purel y inductive impedance case (I 1’ 1 = 0. 22 and

arg Z = _ 9 Q 0) to check accuracy and range of validity. For this case , the

surface wave mode ~s excited since the f i r s t  root of (5a) or (5b) is located

• on the posit ive real axis in the t-p lane. The ray plus canonical integral

• plus slow ~~ ve re presentation in (19) is seen to provid e an excellent

approximation provided that the number of rays ( N + I )  is chosen according

to the criterion in (20). Because of the overlap of the curves f o r  various

N, switching f rom one formulation to the other can be p erformed smoothl y.

• The ray plus canonical integral contribution curves are shown separately

to exhibit the effect of the surface wave on the total field.

In Fig. 7, the near field form in (30) and the ray plus whispering

gallery mode plus slow wave representation ir~ (27) are compared with the

whispering gallery mode (including surface wave) plus continuous spectrum

representati on in (8) . It is interesting to observe that for large enough y ,

the total field can be accuratel y represented just by the surface wave

(M 1) and b y rays provided that the appropr ia te  number  of re f lected rays

is included as y or - 4’ .~ increases .

Curves for  a high loss case are depicted in Figs. 8(a) and 8(b) ,

based on the ray plus canonical integral representation and on the ray-

optical representation , respectively, with the lat ter  imply ing omission

of the canonical integral contribution. Having in mind an application to

ground wave propagation , the high loss impedance Z’ = 0. 22 exp (.130 . 5°)

has been obtained by assuming a wet ground surfac e with

conductivity 0e = lO 2mho m and dielectric constant c = 10 e

subject to a wave frequency f 10MHz. Also shown In Fi g. 8(b) is the

near field form for small y . It should be noted that G
~ 

in (19) does not

e
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cont r ibute  since no pole s ingular it y is located between the contours  C and

~ in Fig. I (see also Section Il-A). All of the modes here  are fast waves

as seen f rom Fig. 2. Note that the ray-optical  contribution alone is adequate

for describing the field sufficientl y far  from the source point because of the

dissipative attenuation of the modes bound close to the sur face , as ment ioned

previously.

• The solid curves in Figs. 6-8 a r e  obtained f rom (8) with

• M
1 

= 32(ka I 00). This form of the solution is taken as a reference  for all

• It was noted in the stud y of the perfect conductor case 1 that the

numerical values derived from the W.0. mode plus continuous spectrum

representation are extremely sensitive to the exact number of modes re-

quired. Unless all 32 modes (for ka = l00)  are included , the perfect con-

ductor curve was found to deviate appreciably f rom the correct  shape . The

same remark applies, to the finite surface impedanc e case in Figs. 6-8

since the higher order  modes have small attenuation coefficients (see Fig. ~

even though the losses may be large. Because of this feature, it is pre-

ferable to use one of the other representations for field calculation.

In Figs. 9(a)-(e),  we have shown, for given phase of the normalized

impedance V, how increasing the amplitude of Z’ affects the surface

field . Curves are depicted based on the ray plus canonical integral plus

slow wave (if necessary)  representation, and on the near field form for

small ‘~ . In our computations. fV ~~ 0. 05 has been chosen as a sample of

a small impedance, and Z’ J = 0. 22 as a sample of a large impedance. If

• arg V = _90 0 
, corresponding to a purely inductive impedance boundary, the •

field amplitude increases as f V increases (see Fig. 9(a))  while the con-

verse is true when the botu~dary impedanc e is purel y capacitive (see

Fig. 9 (e)). This behavior may be attributed to the grea ter  and lesser •

\
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confinement , res pec tivel y, of the lowest order  modal field in the two cases.

As the imag inary part  of roots increases  (see Fig. 4) , the field t ransmit ted

to an observation poin t tend s to decrease  (Fi gs. 9 (b ) - ( d) ) .  Because of the

absorption on the surface , the interference effects between rays  are also

weakened , as seen from the decreasing magnitude of oscillation in the

curve s in Figs. 9(b)-(d).

The curves in Fig. 10 show the effect of the phase of V on the

field when the amplitude remains constant at 0. 05. One observes

that the field tends to increase as the phase of V deviates from zero; this

could have been predicted from the behavior of poles in Fig. 5. Note that

the maxima and minima of the field shift backward for negativ e phase (i. e. ,
0 ’  0 . .  . 0 0-90 ~ arg Z < 0 ) and forward for positiv e phase Ci. e. , 0 < arg Z ~ 90 )•

_
=J
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IV. Conclusions

A var ie ty  of a l ternat ive  rep re sen ta t ions  have been explored in th is

stud y of th e sur face fie lds excited b y a line source located on a concave

cy lindrical  impedance boundary . As for  the previousl y inves tigated

perfect l y conducting case t , these different formulations p rovide new in-

sights into the propagation mechanisms that  p revai l  for  va r ious p a r a m e t e r

ranges  involving the boundary  shape , se parat ion of source and observat ion

• points , and the su r face  impedance. From the detailed discussion and in-

terpretat ion of the numerical  result s  in Section III emerges  the role played

• by the geometr ic  optical field and , for  sufficiently inductive boundaries, by

the surface  wave. The presence  of the sur face  wave leads to an enhance-

ment of the fi~ld over that observed on a perfect  conductor. When losses

are appreciable , att enua tion of m de fields bo und close to the boundar y

establishes the geometric optical field as the ~1ominant and adequate con-

stituent. The versati l i ty of repre~~entation s involving the canonical integral

ha s ag ain been conf irmed , and tabulations have been provided for several

values of surface impedance.

I -
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FI GURE CAP TiONS

• FIG . I i n t eg ra t i on  pa th  and s in g u l a r i t i e s  in comp lex v -p lane .

xx--zeros ~ of ~H’~ ~(ka ) - I Z ’ I I  ~~~ k a ) ) ;  .. -- zeros  v of
p m

• f J t (ka) - iZ’J (ka) }.

FIG. 2 Zeros of E
~’~ 

(ka)-iZ’J~ (ka)] in complex \v~p iane .

• •o - - z er o s  f o r  Z ’ O  ( p e r f e c t  c o nd u c t o r ) ;  00- - z e r o s  f o r  Z’ z 0 • 05 e xp ( - i3 0 .5°)

(small loss); ~~ -- , AA - - zeros  for  Z’ = 0. 22 exp(-i30. 5°)

( large loss) .  The f i r s t  f i v e  roots  AA - - are  obtained f rom (5b)
I. and compared with ~~ - - obtained f rom (7).

FIG. 3 Disposition of integration paths

FIG. 3(a) Steepest descent  paths in complex v -plane

FIG . 3(b ) Steepest descent paths in comp lcx w-plane (v =ka sin ~v)

FIG . 4 Direct and multiply reflected rays  for  a circular boundary.

Geometrica l  quant i t ies  D A, D , D ,, w , w and w are  also1 sO si
shown.

FIG. 5 Roots of JAi ’(t  + iaAi(t )1 as obtained from (5b). The

numbers on the solid and dashed curves denote the phase and

amplitud e of ~ = -ia , respect ively.

FIG. 6 Ray plus canonical integral plus slow wave re pr esen tation in

(19) , with Z’ 0; 22 exp(-190 °). Both the ~ and ~4-4’
coordinates are indicated. Also shown are the ranges in y and

~4 -4~ cor responding  to N = -I  ( — —a— ) (no geometric -optical

r ray); N = 0 ( — “— ) ( i  ray); N 1 ( — . .— ) ( 2  r a y s ) ;  N = 2 (—“‘-—) 
•

( 3 rays). The solid curve is calculated f rom (8) and serves as

the reference solution. The heavy curves  include the su r f ace

wave in (19) (U(t 1) = I for this case), while the lig ht curves have
- been obtained f rom (19 ) with the su r face  wave omitted . 

- -
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FIG . 7 Ray plus W. G. mode plus slow wave representation in (27),
0and near  field f o r m  in (30)  ( -  -), with Z 0. 22 exp (-t 90 ).

The re fe rence  solution (solid curve)  is calculated f rom (8).
The numbers  indicated along the c u r v e s  should be read as
follows: for example, M = 2 JN 1} denotes the range wherein
the direct ray and sing ly r eflected rays plus 2 modes (I W.G.
mode and I sur f ace wave mode) are applicable , while the circles
indicate the star ting point of the relevant intervals. The

coordinate is not shown since it has been dep icted in
Fig. 6.

FIG. 8 Ray plus canonical integral representation in (19), and near
field form (- -) in (30), with Z’ = 0. 22 cxp(-i30. 5°) . Note that
U(t 1) = in this example (see Fig. 2). The reference solution

• (solid curve) is calculated from (8). . - •

FIG. 8(a) Canonical integral  contribution RN included , -. —s—

N = 0 , — • • — —  N = 1 ;  — . • .—  N = 2 .

FIG. 8(b) Canonical integral contribution omitted. — . •  — N = 1;

N = 2.

FIG. 9 Influence of the amplitude of the surface impedance Z’, ca lm

culated from (19) and (30) (--), for various phase angles. The
- 

heavy curves repres ent a large impedance (12’  I = 0.22) and the lig ht
curves a small impedance ( I Z ~~ = 0. 05). Here , U(t 1) = 0 except
for the case Z’ = 0. 22 exp(-i90 °). — ---

~~~— N -1; — - —  N = 0;
—~~•— N = I; and —‘ • -— N = 2.

FIG. 9(a) arg V = -90°

• FIG. 9(b) arg Z’ = -45 °

0FIG. 9(c ) arg Z = 0

• FIG. 9(d) arg Z’ = 45°

FIG. 9(e) arg Z’ = 90°

FIG. 10 Influence of the phase of the surface Impedance Z’ , calculated

from (19), with Z ’f  = 0. 05.

—
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FIG . 10(a) Negat ive phase ang le.
_ _ _ _  

I I— a r g  Z = 0 ; — .— aTg Z = -45
— . .— arg Z -90

FIG. 10(b) Positive phase an gle.
arg z’ ~ O 

—. — ‘ —-  arg V = 45°;

• • arg Z = 9 0

FIG. 11 Plot of canonical integral u N (y , a) ~ vs.

Solid curves:  • Z’ = 0 (a = 0) (perfec t  conductor) ;

- Z ’ = 0. 05 exp( -i30. 5°) or Rea = 0. 16799,

lin a = - 0. 09903 (small loss) ; — . —

Z’ = 0 .22  exp(.i30. 5°) or Rea = 0. 6997 , • •

u n  a = -0. 4 1261 (large loss).

.
~~4



T~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

V— Plane -

_ _ _ _ _  

/

x
x ~

1
M1

I FIG.1

I • 

.

IL - - ~— --- - - - 

. . 

T~~~~ t ~



•~~~SS5 5~~ ~~~~~ ~ S~•S_S~ ~~~~~~~~~~~r •- •—-S-—-.~---——.I~~--~~~~~~-•-- 
- • -

~ 
~

- -

~

-— •

~~

_~~~~~~1

0

I

S 

.5

•

N

w
_____________________ 

I i 11.
C’~4 ~~~~“m ~~‘ N

0 0 0 0 0
S S a a a S 

S

‘4

-I



r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- -S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• -~ .

V—P l ane

FIG .3(a)



~~~~~~~~~Ii
- - -
~~~~~~~~

- •-
~
_

~~
- -—••• • 

~~E~T)~~~~

W.-plane

—I

S 

c~ - 5 

: 

-

FIG .3(b) 55 5

a- - - 411



3
D~~ \N

-

~~~~~~~

/ N ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

w
SV
>
)c?\\

I a
I ws

I , a
Ws2

• F I G .4

--- - -S  • - •~~- —•- --



- —55 - — 55-~ - — 55—-—- • - ~~~ ~~~~~~~~~~~~~~~~~~~~ 
~~~- 5~55~-_.~~s, -55-55-—~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~ .T~ -~~_ ~~-~~~~~- -• I

~~~

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

5

// I -

~I I -
~~~~

~~~~~~~~~~~~~~~
—

~~L
LI.

- 5 5  - - - - - 5



•—1

5 0

~~~

‘ 

‘I

•
~
— 

~~~ .~~~~~~~~

c

~~~~~

/ In
.7 

0

\
____  

\.
~~~~~~ •~~~~~~ 

•

U

J a~~~~I
U.

I 
C

-

0 
IiI

— 

a
— 

C 

‘4 
-

I--



55 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~

- -

~~

~~~~ 
&

-ø

I

• r~~~~
-0
~

• 

- 

~~
1o

-

-~~~~
(‘1
I I

. I,

• I ~‘..•.- 1.~~~.I

~

- -V.

I
0 2

— N

L~~.



- —5 --—~~~~~ _ _55S55 5555 _S -- ~~~~~~~~~~~~~~~~~~~ - ----.55 - ---- 55-— --5 - - __________ ‘~~~
__

~~~~~~~~~_—5-_-_-S 5S55S___ 55_S S_____,•.,-~___SS

55 -~~~~~~~---- - - -S- - - -

55

-

~ 0 0
‘40

. — 

• 

-ø

11

-
~~

. o00

‘ 2

_

Ip. / II~~~~~~
2 ~-
‘ C o_ H

U.

I .  I ~~~ I I -
F~ W In N ‘4q ~ ~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

.



-0

I 

:

- —
~~~~~~~~~

--. 
— 5 5  

- 

- - -



-S _ ---~~~~ -

- 
—

~~

— .. -— - 

‘4
. .~~~~... ...

- - - -5-,...— ...--- -... --
~~
. 

~~~~~~~~5..—.. .— . 

— 

- 0

.. .. ..
~~~~~~ ~. - - • 

~--5-— •.. ____•5•__•5•_-.-.•—_ •
- _ - -

-5——-- -
• ..~~~~ -l ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~~~~~a - • -~~~~~~~~~
. - _ - - .

— - —

5~~_ .. — .5 _ . - — •. —5. , 

• -.—. 
_ _ 

- - . . . - 5---- —

— —5—— .. . . -_, 

— 
. . —

• .—..
~~~~~ _ •

S . — - . 

— (.0
.~~~~~

. 
• • —

- In. _
.r~~ ._. • — .

::
5-.

— N

‘4

-_ - - -

~~~~~~~~~~~

•

~~~~ 

-

~~~~~~~~~ 

— J



-
55-- - 

—— --
~~--- --- - --- 

55 

~~~~
-
~~

—:-
~~ 

-— -- — --,--— — ‘1

.- -1

0
—

~~~~~

_ _ 
.5•>

- - — - ~~~~~~~~~~~~~~~~~ .~~~~
~~~~~~~~~

.— - .

-

-
55

—

/ - IS)/
—.5 I

.—

~~~

• ---- • I
• 

—‘
.

5-5- - ----.
- -
-5 .

as.- j  ~~ - C’,
1~

\ / - N

—5

5-,

. 0~

- - —



- ----- -55- -

~~~~~~~~~ ~~~~~~~~~~~~
5,-I

~~~~~~~~~~~~~~~~~~~~~ 
0

c-..• ~-.. - •--- .. •5.

—

cz~
~~~~~~~~~~~~~~~~~~~~~~~~~~~ - C)

_~~~~ 5~~

- .5--- .

- ( 0

. 7 ~

~~~~
—a--.

— N

P C.)

- -



-S— 55 - 5 5 - -

- 0
‘4

...~~~~~~~~~
.• —<

~~
-:

~~~ ..•

C)

..
~~~~~~~ -

— ..-;, -

C

-~~~~~_ __
•5__ .._.

% 
-

(0

- / -
. 

- It)-.5
’

1• _5~~~~.

H 

-

~~~~~

“ I

- m

\\\ j
— N

~~~~5

II 
U.

-
~~~~~~~~~~~

— - _ _ t 
II) 

SI

— ,4 
a

IS) 
c



-

-

-
5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- a

‘
—

5-- - .  

~~~~~~~~~~~~ 
- 0

- — ~~~~~~~~~~~~~ —
- •__

~~~ J .5 ______5. .

.-.-~
---

~~~~~ - -

- -

- _  
_ .~~~~~~~ 

- C)
— ... -5 -- . .  -5--- ...
—

~~~~~~~~~~~~~~~~~ 
-

cZ .. -~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~ “

~~~~,
55 c_ ._ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 1•~

-5-- ..— --
~~~- •

•—
-• —

._- _ . .,

..— - -— - k .~~ ”
- ( _.~~

__.-_,,, 

— 
~~~~~~ • ••

~~
5- 

— (0
- -~~~~~~ ~~~~~

- .

-
. — •,

~~
-

~~~~~~~~~~ \___
( 5.— .

- U)5 __ .5-- . 
. -a- 

_

~~) 
- 55

,-, -
,

• --“
-

5--.-
--

.

• 

_ _ _ _ _ _ _ _

— 
.~~ I — — -1— — I U.

.~-2 U) C U) 0 11)
N N ‘4 — 0a a . a

— -55 - 

. 

- 55 - -- - -55
~~~~~~~~~~~~~~~~~ -~~~~~ J



_ _ _  : 5 , 5 5  55— 
- - ---55. 

‘~~~~~~~~~~~~~: - ~~~~~~~~
- -

- 
-

— . 

~=:,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

-
_

~~
-

- C)

~ c:•~~~
••

~~~ ~~~~~~~~~~~~~~~
—_-~~~~• . —

—• • — .. —.. 

~~~~- . —-5.— .- -
~~~~~ 

. — . —. - 
__55;

~ 5;;;, 
-

5--..-- • 
•-5—. 

c::~~~
• ‘-—--- . • • 5--.. .

S —. — 
~~-~~m - N

. L  •—~
. ._ -• • --

. 

~~~~
—_--_-

-
55

..— .. -5

~~~~~~
— ..

• — 
•. —

-5 - 

__i_ . — • — 
- ( 0

. • 
~~~~~~~~~~~~~~~~~~ 

• 

_
__ 

• —-

.~~~~~
• —

——
-5
—

- -5—

- I n

• —5-..-
--- -. 5.-as • -

-

5555 5 5 - S  

I-



IF
(0

——
-5— 

—--~~~~~~
—-—~~~

- 
—~ 

•

— ——~~
.—-5---

.—•-—•—

• 1 l)
—5- .5-5— - —-5-- -

—
-5 .

.—
••-

- I 

• m

L - 
_ _



S .- -. 

~~ ~~~~~~~~~~~ ~ 
15- 

~~~

--— -—5555------- _- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_•5.. . — N
-. . — .

. .5-- ..— .. ‘4a ,
‘ 55_____ 

—-5— .—--—— .—
- a 

__•-__-_
_____•-

—

-.55 

/ .‘4
,
,

_55 / .5-I - : I!
•
1

~?

- ,~7
•\

- ( f.. U,~~

-
. 

-- -55- — 
. - 55- -~~~ - - 

--
~
-

~~~~~~~~~~~~~55-~~~- L-~ -~~~


